Abstract

Long noncoding RNA DNAJC3-AS1 (lncRNA DNAJC3-AS1) has been probed in many studies, while the regulatory mechanism of DNAJC3-AS1 on papillary thyroid carcinoma (PTC) via regulating microRNA (miR)-27a-3p remains inadequate. This research aims to depict the role of DNAJC3-AS1, miR-27a-3p, collagen, and calcium-binding EGF domain-containing protein 1 (CCBE1) on PTC development. DNAJC3-AS1, miR-27a-3p, and CCBE1 expression levels in PTC tissues and adjacent normal tissues were tested. The relation of DNAJC3-AS1, miR-27a-3p, and CCBE1 was analyzed. DNAJC3-AS1 and miR-27a-3p and CCBE1-related oligonucleotides were transfected into IHH-4 cells to investigate their role in PTC development. Cell tumorigenicity was detected by in vivo assay. DNAJC3-AS1 and CCBE1 expressed highly and miR-27a-3p expressed lowly in PTC. Downregulation of DNAJC3-AS1, upregulating miR-27a-3p or downregulating CCBE1 impaired the malignant behaviors of IHH-4 cells. Depletion of miR-27a-3p reversed the DNAJC3-AS1 suppression-induced phenotypic inhibition of IHH-4 cells. DNAJC3-AS1 bound to miR-27a-3p and CCBE1 as a target of miR-27a-3p. Our study highlights that DNAJC3-AS1 inhibits miR-27a-3p to promote CCBE1 expression, thereby facilitating PTC development. This study affords distinguished therapeutic strategies and novel research directions for PTC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call