Abstract

BackgroundLong non-coding RNA is considered to be essential to modulate the development and progression of human malignant cancers. And long non-coding RNA can act as crucial modulators by sponging the corresponding microRNA in tumorigenesis. We aimed to elucidate the function of ACTA2-AS1 and its molecular mechanism in colon adenocarcinoma.Materials and methodsThe expression of ACTA2-AS1, miR-4428 and BCL2L11 in colon adenocarcinoma tissues were detected via qRT-PCR. SW480 and HT29 cells were transfected with shRNA ACTA2-AS1, OE ACTA2-AS1, miRNA mimics of miR-4428, miR-4428 inhibitor, si-BCL2L11 and over-expression of si-BCL2L11. Cell proliferation, colony formation and apoptosis were respectively assessed using CCK-8 assay, colony assay and flow cytometry. Luciferase reporter assay was performed to verify the targets of ACTA2-AS1 and miR-4428. Tumor subcutaneous xenograft mode was constructed to explore tumor growth in vivo.ResultsACTA2-AS1 was obviously downregulated in human colon adenocarcinoma tissues and colon adenocarcinoma cell lines. Silence or over-expression of ACTA2-AS1 promoted or inhibited cell proliferation and colony formation abilities, and regulated apoptosis. The silence of ACTA2-AS1 resulted in the decrease of Bax and increase of Bal2, while restored in OE ACTA2-AS1 group when compared with the control transfected cells. In addition, luciferase reporter assay revealed that ACTA2-AS1 interacted with miR-4428 and suppressed its expression. miR-4428 could bind to 3ʹ untranslated region of BCL2L11 and modulated the expression of BCL2L11 negatively. Knockdown of ACTA2-AS1 and over-expression of BCL2L11 reversed the biological function that ACTA2-AS1 mediated by knockdown ACTA2-AS1 alone.ConclusionOur data demonstrated that ACTA2-AS1 could suppress colon adenocarcinoma progression via sponging miR-4428 to regulate BCL2L11 expression.

Highlights

  • Colorectal cancer (CRC) is one of the most frequently diagnosed tumors with poor prognosis and the most common CRC is colon adenocarcinoma (COAD) [1]

  • Luciferase reporter assay revealed that ACTA2-AS1 interacted with miR-4428 and suppressed its expression. miR-4428 could bind to 3ʹ untranslated region of BCL2L11 and modulated the expression of BCL2L11 negatively

  • Our data demonstrated that ACTA2-AS1 could suppress colon adenocarcinoma progression via sponging miR-4428 to regulate BCL2L11 expression

Read more

Summary

Introduction

Colorectal cancer (CRC) is one of the most frequently diagnosed tumors with poor prognosis and the most common CRC is colon adenocarcinoma (COAD) [1]. The investigation of promising therapeutic targets and molecular mechanism involved in the carcinogenesis of COAD remains especially crucial for the early diagnosis, timely treatment, and prognosis. Previous studies suggest that lncRNAs are involved in the tumorigenesis through multiple mechanisms, such as transcriptional regulation, protein post-translational regulation miRNA regulation and so on [8]. Previous studies proved that a growing number of lncRNAs play crucial roles in COAD tumorigenesis and development, such as ZDHHC8P1, FOXD3-AS1, and ZEB1-AS [9,10,11]. Long non-coding RNA is considered to be essential to modulate the development and progression of human malignant cancers. Long non-coding RNA can act as crucial modulators by sponging the corresponding microRNA in tumorigenesis. We aimed to elucidate the function of ACTA2-AS1 and its molecular mechanism in colon adenocarcinoma

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.