Abstract
It has been reported that tendon-derived stem cells(TDSCs) conduce to the ostosis in tendon diseases, and the molecular mechanism needs to be discussed. To investigate the function and mechanism of LncRNA in tendinopathy. Tendon of tendinopathy patients and health controls were obtained, and sequencing analysis have been performed to detect the significantly expressed genes and non-coding RNAs. Moreover, to further discuss LncRNA AC108925 in tendinopathy, tendinopathy animal models have been established, and the expression of LncRNA AC108925 expression was examined by RT-qPCR methods. Furthermore, hTDSCs have been treated by osteogenic medium, and the modulating function of LncRNA AC108925 on the osteoblast differentiation of hTDSCs have been examined. Sequencing analysis showed that AC108925 a dramatically elevated LncRNA, and results of animal and cells studies confirmed the finding. Knockdown AC108925 inhibited the osteogenic differentiation of osteogenic medium treated TDSCs by decreasing the expression of osteogenic markers. Furthermore, miR-146a-3p is a target of AC108925 in TDSCs, and miR-146a-3p is a negative modulator of osteogenic differentiation of hTDSCs by inhibiting the effects of AC108925 shRNA on osteogenic differentiation of hTDSCs. AC108925 can regulate the osteogenic differentiation of hTDSCs via regulating the miR-146a-3p. Targeting the AC108925/miR-146a-3p axis might be a latent way to treat tendinopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.