Abstract
This study aimed to explore the role of LncKCNQ1OT1/hsa-miR-153-3p/RUNX2 in the odontoblastic differentiation of human dental pulp stem cells (DPSCs) and its possible mechanism. The expression of LncKCNQ1OT1, hsa-miR-153-3p, and RUNX2 in the odontoblastic differentiation was detected by qRT-PCR. Interaction between LncKCNQ1OT1 and hsa-miR-153-3p and interaction between hsa-miR-153-3p and RUNX2 were detected by dual-luciferase assay. The cell viability of DPSCs was detected by CCK-8, and the effect of LncKCNQ1OT1 and hsa-miR-153-3p on the odontoblastic differentiation of DPSCs was observed by alizarin red staining, alkaline phosphatase (ALP) activity assay, and Western blot for RUNX2, DSPP, and DMP-1. The results showed, during odontoblastic differentiation of DPSCs, the expression of LncKCNQ1OT1 increased, hsa-miR-153-3p expression decreased, and RUNX2 expression increased. Dual-luciferase assay showed that LncKCNQ1OT1 sponges hsa-miR-153-3p and hsa-miR-153-3p targets on RUNX2. After LncKCNQ1OT1 and hsa-miR-153-3p expressions of DPSCs were changed, the cell viability was not notably changed, but the odontoblastic differentiation was notably changed, which was confirmed with Alizarin Red staining, ALP activity, and Western blot for RUNX2, DSPP, and DMP-1. The results indicate that LncKCNQ1OT1 promotes the odontoblastic differentiation of DPSCs via regulating hsa-miR-153-3p/RUNX2 axis, which may provide a therapeutic clue for odontogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.