Abstract

Osteogeinc differentiation from mesenchymal stem cells (MSCs) into osteoblasts is a key step for bone tissue engineering in regenerative medicine. The insight into regulatory mechanism of osteogenesis of MSCs facilitates achieving better recovery effect. Long non-coding RNAs are regarded as a family of important moderators in osteogenesis. In this study, we found a novel lncRNA, lnc-PPP2R1B was up-regulated during osteogenesis of MSCs by Illumina HiSeq transcritome sequencing. We demonstrated lnc-PPP2R1B overexpression promoted osteogenesis and knockdown of lnc-PPP2R1B inhibited osteogenesis of MSCs. Mechanically, it physically interacted with and up-regulated heterogeneous nuclear ribonucleoprotein L Like (HNRNPLL), which is a master regulator of activation-induced alternative splicing in T cells. We found lnc-PPP2R1B knockdown or HNRNPLL knockdown decreased transcript-201 of Protein Phosphatase 2A, Regulatory Subunit A, Beta Isoform (PPP2R1B) while increased transcript-203 of PPP2R1B, and did not affect transcript-202/204/206. PPP2R1B isa constant regulatory subunit of protein phosphatase 2 (PP2A), which activates Wnt/β-catenin pathway by removing phosphorylation and stabilization of β-catenin and translocation into nucleus. The transcript-201 retained exon 2 and 3, compared to transcript-203. And it was reported the exon 2 and 3 of PPP2R1B were one part of B subunit binding domain on A subunit in PP2A trimer, and therefore retaining exon 2 and 3 promised formation and enzyme function of PP2A. Finally, lnc-PPP2R1B promoted ectopic osteogenesis in vivo. Conclusively, lnc-PPP2R1B mediated alternative splicing of PPP2R1B through retaining exon 2 and 3 by interacting with HNRNPLL and then promoted osteogenesis, which may facilitate an in-depth understanding of function and mechanism of lncRNAs in osteogenesis. Lnc-PPP2R1B interacted with HNRNPLL, and regulated alternative splicing of PPP2R1B through retaining exon 2 and 3, which preserved enzyme function of PP2A and enhanced dephosphorylation and nuclear translocation of β-catenin, thereby promoting Runx2 and OSX expression and then osteogenesis. And it provided experimental data and potential target for promoting bone formation and bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.