Abstract

Abstract 2728 Background.We and others have previously demonstrated that primary Waldenstrom's Macroglobulinemia (WM) and Chronic lymphocytic leukemia (CLL) cells show increased expression of microRNA-155 (miR-155), suggesting a role in regulating pathogenesis and tumor progression of these diseases. However, developing therapeutic agents that specifically target miRNAs has been hampered by the lack of appropriate delivery of small RNA inhibitors into tumor cells. We tested the effect of a novel LNA (locked nucleic acid)-modified anti-miR-155 in WM and CLL. Methods.WM and CLL cells, both cell lines (BCWM.1; MEC.1) and primary tumor cells; BCWM.1 Luc+ cells; and primary WM bone marrow (BM) stromal cells were used. WM and CLL cells were treated with antisense LNA anti-miR-155 or LNA scramble oligonucleotide. Efficiency of delivering FAM-labeled LNA into cells was determined by flow cytometry. Survival and cell proliferation were assessed by MTT and thymidine uptake assay, respectively. Synergistic effects of LNA with bortezomib were detected on BCWM.1 or MEC1 cells. Co-culture of BCWM.1 or MEC1 cells with WM bone marrow stromal cells was performed to better define the effect of the LNA-anti-miR155 in the context of the bone marrow microenvironment. miR-155 levels were detected in stromal cells from WM patients by qPCR. Co-culture of BCWM.1 or MEC1 cells with either wild-type or miR155−/− mice BM stromal cells was examined after LNA treatment. Gene expression profiling analysis was performed on BCWM.1 cells treated with either LNA anti-miR-155 or scramble control. miR-155 target gene candidates were predicted by TargetScan software. mRNA levels of miR-155, and its known target genes or gene candidates were detected by qRT-PCR. A microRNA luciferase reporter assay was used to determine whether miR-155 target candidates could be directly regulated by miR-155. mRNA levels of miR-155 targets were detected by qRT-PCR from primary WM or CLL cells treated with LNA. The activity of the LNA-anti-miR-155 was also detected in vivo using bioluminescence imaging and mRNA levels of miR-155 targets were detected by qRT-PCR ex vivo. Efficiency of introducing the FAM-labeled LNA into mice BM cells was determined by flow cytometry 1 week or 2 weeks after intravenous injection. Results.The efficiency of delivering LNA oligos into both WM and CLL-derived cell lines and primary samples was higher than 90%. LNA antimiR-155 reduced proliferation of WM and CLL-derived cell lines by 30–50%, as compared to LNA scramble control. In contrast, LNA antimiR-155 didn’t exert significant cytotoxicity in BCWM.1 or MEC.1. LNA synergistically decreased BCWM.1 or MEC1 cell growth co-treated with bortezomib and decreased BCWM.1 or MEC1 cell growth co-cultured with WM BM stromal cells in vitro. A higher level of miR-155 was found in WM BM stromal cells compared to normal ones. LNA decreased BCWM.1 or MEC1 cell growth when co-cultured with BM stromal cells from miR155−/− mice compared with wild-type. We demonstrated increased expression of miR-155-known targeted genes, including CEBPβ, SOCS1, SMAD5, and several novel target candidates including MAFB, SH3PXD2A, and SHANK2, in WM cells upon LNA anti-miR-155 treatment. These target candidates were confirmed to be directly regulated by miR-155 using a luciferase reporter assay. mRNA levels of miR-155 targets were upregulated by 1.5–2 fold at 48 hr after direct incubation of the LNA with primary WM or CLL samples, indicating efficient delivery and biologic effect of the LNA in cells. Moreover, this LNA showed significant in vivo activity by inhibiting WM cell proliferation in a disseminated xenograft mouse model. Upregulation of miR-155 targeted genes were confirmed ex vivo, in WM cells isolated from the BM of treated mice compared to control. Mice BM cells were FAM positive 1 or 2 weeks after injection indicating efficient delivery of FAM-labeled LNA into cells in vivo. Summary.A novel LNA (locked nucleic acid)-modified anti-miR against miR-155 could be highly efficiently delivered into tumor cells in vivo in the bone marrow microenvironment. Anti-WM activity of LNA anti-miR-155 was confirmed both in vitro and in vivo and anti-CLL activity was confirmed in vitro. Novel miR-155 direct target genes including MAFB, SH3PXD2A, and SHANK2 were identified. These findings will help to design individualized clinical trials for WM and CLL patients with elevated levels of miR-155 in their tumor cells. Disclosures:Roccaro:Roche:. Obad:Santaris Pharma: Employment. Broom:Electroporation: Employment. Kauppinen:Santaris Pharma: Employment. Brown:Calistoga: Consultancy, Research Funding; Celgene: Honoraria, Research Funding; Genzyme: Research Funding; GSK: Research Funding. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium: Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.