Abstract

Using a triazole carboxylic ligand (H2L = 4-(1H-1,2,4-triazol-1-yl) isophthalic acid), four water-stable lanthanide metal–organic frameworks (Ln(III)-MOFs) (1-Ln, Ln(III) = Tb, Eu, Dy, and Sm), [Ln(L)(HL)(H2O)2], where the deprotonated H2L ligands have two different coordination modes: L2− and HL− [(a): η2μ2χ2, η2μ1χ2; (b): η2μ1χ2], have been synthesized by solvothermal reaction and characterized by elemental analysis, FT-IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Single-crystal X-ray diffraction analyses show that Ln(III)-MOFs are isostructural with 2D-layered structures with uncoordinated carboxylic and triazole groups. The luminescent properties of 1-Tb in aqueous solution containing different cationic solutions and small organic solvents have been explored under ultraviolet irradiation at room temperature. The high quenching constant KSV values and low detection limits indicate that 1-Tb exhibits extremely high detection sensitivity and selectivity toward Fe3+ ions and nitrobenzene; 1-Tb can keep its original network and be reused after the sensing experiments, which provide us with an optical material for detecting Fe3+ ions and nitrobenzene. Magnetic studies show that antiferromagnetic exchange interactions exist between Dy(III) ions in 1-Dy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.