Abstract

Preeclampsia (PE) is a common obstetric disease caused by placenta development abnormality, typically characterized as inadequate trophoblast invasion and spiral artery remodeling. In this study, we found that LMO2 level was decreased in both cytotrophoblast (CTB) and interstitial extravillous trophoblast (iEVT) in human PE placentas, and LMO2 selectively promoted cell migration in iEVT derived HTR-8/SVneo cells whereas increased proliferation in CTB derived JEG-3 cells. In mechanism, LMO2 interacted with NCKAP1, leading to destruction of WAVE regulatory complex and increased lamellipodia formation in HTR-8/SVneo cells, whereas interacted with β-catenin and up-regulated a number of core Wnt/Hippo pathway target genes in JEG-3 cells. This study revealed the differentially functional patterns of LMO2 in different trophoblast subtypes, and suggested LMO2 as a novel target for PE prediction, prevention and treatment in clinical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call