Abstract
In this epigrammatic, the problem of exponential stability for BAM-type neural networks (BAMNNs) with non-fragile state estimator is investigated under time-varying delays. The delays in discrete and distributed terms are assumed to be time-varying, which means that the lower and upper bounds can be derived. Without involving the time-delays or the activation functions, the non-fragile estimators are constructed in terms of simple linear formation and also the implementation of state estimators are uncomplicated. In addition, the non-fragile estimators are reduced the possible implementation errors in neural networks. For consequence, reason of energy saving, the non-fragile estimators are designed with neural networks. By fabricating a suitable LKF (Lyapunov–Krasovskii functional) and enroling some analysis techniques, a novel sufficient conditions for exponential stability of the designated neural networks are derived in terms of Linear Matrix Inequalities (LMIs), which can be easily assessed by MATLAB LMI Control toolbox. Accordingly, the research proposed here, is advanced and less conservative than the previous one exists in the literature. Finally, two numerical examples with simulations and comparative studies are performed to substantiate the advantage and validity of our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.