Abstract

Less conservative condition is provided in this paper for quadratic stabilization of guaranteed cost control (GCC) of Takagi–Sugeno fuzzy systems with parallel distributed compensation (PDC). To derive the condition, firstly a parameter-dependent linear matrix inequality (PD-LMI) is established to find quadratically stable PDC controller gains of GCC. Secondly, by applying Polya’s theorem, evaluation of the PD-LMI is transformed into an equivalent problem of evaluation of a sequence of LMI relaxations. Different from other existing conditions, the LMI relaxations are sufficient and asymptotically reach necessity for evaluating the PD-LMI as a related scalar parameter, d, increases. The resulting guaranteed costs of PDC controllers are non-increasing with respect to the increase in the parameter d and converge to the global optimal value under quadratic stability at the limiting case. In addition, for input-affine nonlinear systems, the proposed condition is extended with the consideration of modeling errors, which helps to reduce the computational complexity of the LMI relaxations. Finally, simulations of two examples demonstrate the efficiency and feasibility of the proposed condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.