Abstract
Recent results have shown that several H2 and H2-related problems can be formulated as a convex optimization problem involving linear matrix inequalities (LMIs) with a finite number of variables. This paper presents an LMI-based robust H2 controller design for damping oscillations in power systems. The proposed controller uses full state feedback. The feedback gain matrix is obtained as the solution of a linear matrix inequality. The technique is illustrated with applications to the design of stabilizer for a typical single-machine infinite-bus (SMIB) and a multimachine power system. The LMI based control ensures adequate damping for widely varying system operating conditions and is compared with conventional power system stabilizer (CPSS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.