Abstract

This paper is concerned with the problem of global asymptotic stability of a class of nonlinear uncertain two-dimensional (2-D) discrete systems described by the Fornasini-Marchesini second local state-space model with time-varying state delays. The class of systems under investigation involves norm bounded parameter uncertainties, interval-like time-varying delays and various combinations of quantisation and overflow nonlinearities. A linear matrix inequality-based delay-dependent criterion for the global asymptotic stability of such systems is proposed. An example is given to illustrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.