Abstract

This paper derives some sufficient conditions for asymptotic stability of neural networks with constant or time-varying delays. The Lyapunov-Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach are employed to investigate the problem. It shows how some well-known results can be refined and generalized in a straightforward manner. For the case of constant time delays, the stability criteria are delay-independent; for the case of time-varying delays, the stability criteria are delay-dependent. The results obtained in this paper are less conservative than the ones reported so far in the literature and provides one more set of criteria for determining the stability of delayed neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.