Abstract

Accurate estimation of software development effort is strongly associated with the success or failure of software projects. The clear lack of convincing accuracy and flexibility in this area has attracted the attention of researchers over the past few years. Despite improvements achieved in effort estimating, there is no strong agreement as to which individual model is the best. Recent studies have found that an accurate estimation of development effort in software projects is unreachable in global space, meaning that proposing a high performance estimation model for use in different types of software projects is likely impossible. In this paper, a localized multi-estimator model, called LMES, is proposed in which software projects are classified based on underlying attributes. Different clusters of projects are then locally investigated so that the most accurate estimators are selected for each cluster. Unlike prior models, LMES does not rely on only one individual estimator in a cluster of projects. Rather, an exhaustive investigation is conducted to find the best combination of estimators to assign to each cluster. The investigation domain includes 10 estimators combined using four combination methods, which results in 4017 different combinations. ISBSG, Maxwell and COCOMO datasets are utilized for evaluation purposes, which include a total of 573 real software projects. The promising results show that the estimate accuracy is improved through localization of estimation process and allocation of appropriate estimators. Besides increased accuracy, the significant contribution of LMES is its adaptability and flexibility to deal with the complexity and uncertainty that exist in the field of software development effort estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.