Abstract
We consider optimal numeric planning with numeric conditions consisting of linear expressions of numeric state variables and actions that increase or decrease numeric state variables by constant quantities. We build on previous research to introduce a new variant of the numeric hmax heuristic based on the delete-relaxed version of such planning tasks. Although our hmax heuristic is inadmissible, it yields a numeric version of the classical LM-cut heuristic which is admissible. Further, we prove that our LM-cut heuristic neither dominates nor is dominated by the existing numeric heuristic hmax(hbd). We show that admissibility also holds when integrating the numeric cuts into the operator-counting (OC) heuristic producing an admissible numeric version of the OC heuristic. Through experiments, we demonstrate that both these heuristics compete favorably with the state-of-the-art heuristics: in particular, while sometimes expanding more nodes than other heuristics, numeric OC solves 19 more problem instances than the next closest heuristic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.