Abstract

Chitinases, key enzymes involved in degradation of chitin, have been repeatedly shown to play an indispensable role during insect post-embryonic molting processes at stage transitions. However, how chitinases affect insect embryonic development remains to be analyzed. In this study, we investigated the role of chitinase 5–1 (LmCht5-1) during embryonic development of the hemimetabolous insect Locusta migratoria. LmCht5-1 transcript levels were high in pro-nymphs during late embryogenesis. The respective protein localized to both the pro-nymphal and, to a much lesser extent, the newly formed nymphal cuticle. After injection of double stranded RNA against LmCht5-1 into 8 days old embryos, LmCht5-1 transcripts were strongly reduced. Most of dsLmCht5-1-injected pro-nymphs failed to develop to first-instar nymphs and died at or before hatching. Histological analyzes showed that degradation of the pro-nymph cuticle was blocked in these animals. At the ultra-structural level, we found that LmCht5-1 was needed for the degradation of the lamellar procuticle, while the separation of the procuticle from the epicuticle and epidermis (apolysis) was independent of LmCht5-1 function. Taken together, our results indicate that LmCht5-1 and other yet unknown degrading enzymes act in parallel at distinct positions of the cuticle during molting of the pro-nymph to the first-instar nymph during locust embryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.