Abstract

Regular path query (RPQ) is a basic operation for graph data analysis, and persistent RPQ in streaming graphs is a new-emerging research topic. In this paper, we propose a novel algorithm for persistent RPQ in streaming graphs, named LM-SRPQ. It solves persistent RPQ with a combination of intermediate result materialization and real-time graph traversal. Compared to prior art, it merges redundant storage and computation, achieving higher memory and time efficiency. We carry out extensive experiments with both real-world and synthetic streaming graphs to evaluate its performance. Experiment results confirm its superiority compared to prior art in both memory and time efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.