Abstract

The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.