Abstract
A Low-complexity and Low-memory Entropy Coder (LLEC) for image compression is proposed in this paper. The two key elements in LLEC are zerotree coding and Golomb-Rice codes. Zerotree coding exploits the zerotree structure of transformed coefficients for higher compression efficiency. Golomb-Rice codes are used to code the remaining coefficients in a VLC/VLI manner for low complexity and low memory. The experimental results show that the compression efficiency of DCT- and DWT-based LLEC outperforms baseline JPEG and EZW at the given bit rates, respectively. When compared with SPIHT, LLEC is inferior by 0.3 dB on average for the tested images but superior in terms of computational complexity and memory requirement. In addition, LLEC has other desirable features such as parallel processing support, ROI (Region Of Interest) coding and as a universal entropy coder for DCT and DWT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.