Abstract

Neuronal migration is an essential process for the development of the cerebral cortex. We have previously shown that LKB1, an evolutionally conserved polarity kinase, plays a critical role in neuronal migration in the developing neocortex. Here we show that LKB1 mediates Ser9 phosphorylation of GSK3beta to inactivate the kinase at the leading process tip of migrating neurons in the developing neocortex. This enables the microtubule plus-end binding protein adenomatous polyposis coli (APC) to localize at the distal ends of microtubules in the tip, thereby stabilizing microtubules near the leading edge. We also show that LKB1 activity, Ser9 phosphorylation of GSK3beta, and APC binding to the distal ends of microtubules are required for the microtubule stabilization in the leading process tip, centrosomal forward movement, and neuronal migration. These findings suggest that LKB1-induced spatial control of GSK3beta and APC at the leading process tip mediates the stabilization of microtubules within the tip and is critical for centrosomal forward movement and neuronal migration in the developing neocortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.