Abstract

BackgroundThe incidence of esophageal adenocarcinoma (EAC) has increased over the last several decades. Apart from mutations in TP53 gene, there are little data on genetic drivers of EAC. Liver kinase B1 (LKB1) has emerged as a multifunctional tumor suppressor regulating cell growth, differentiation, and metabolism. Somatic inactivation of LKB1 has been described in several tumor types; however, whether LKB1 inactivation has a role in EAC is unknown. Here we analyzed patient tumors to assess the prevalence of LKB1 loss in EAC. MethodsChromosomal deletion and expression of LKB1 in EAC were investigated using publicly available genomic data. Protein expression was assessed by immunohistochemistry (IHC) analysis for LKB1 in a tissue microarray (TMA) containing esophageal tumor specimens, including EAC. LKB1 was suppressed in EAC cells to determine the effects on cell growth in vitro. ResultsAnalysis of EAC data in The Cancer Genome Atlas dataset revealed significant deletion of chromosome 19p13.3, containing the LKB1 gene locus. Single copy loss (shallow deletion) of LKB1 was present in 58% of EAC samples. Expression of LKB1 was significantly lower in EAC tumors compared with normal esophagus. IHC analysis showed reduced LKB1 protein expression in EAC. Suppression of LKB1 was sufficient to enhance EAC cell growth in vitro. ConclusionsOur data suggest that inactivation of LKB1 frequently occurs in EAC. Based on the reported oncogenic effects of LKB1 inactivation, our data indicate that LKB1 loss may play a significant role in EAC tumorigenesis, and point to the need for future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call