Abstract

3D-Li ion batteries are identified as one of the most promising technologies for improving portable and safe energy storage devices. One of the main remaining challenges to be tackled in that regard is the manufacture of efficient nanostructured electrode materials. In this paper, we report on the first realization of an electrochemically active cathodic LixCoyOz material grown via a thermal atomic layer deposition process based on the combination of Co(thd)2 and Li(thd) organometallic ligands and O3 as an oxidizing agent. Comprehensive characterizations comprising XPS, Raman, HIM (helium ion microscopy)-SIMS, and the first ever SEM images of a thermal-atomic layer deposition (ALD) deposited LixCoyOz material are shown and discussed as well and the very first electrochemical results to attest the electrochemical activity of the deposited material. Those results act as the first demonstration that lithiated materials and more precisely, LixCoyOz, can be grown via an advanced thermal ALD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.