Abstract

AbstractAgGaSe2 and LiGaSe2 are two famous mid‐infrared nonlinear optical (NLO) materials with similar chemical formula but different structural symmetry. The former material has relatively larger NLO effect and birefringence but rather small energy band gap, while the latter is the opposite. Aiming at achieving a good balance of NLO properties, here the substitution between silver and lithium ions on the evolution of structural and optical properties in a new series of LixAg1–xGaSe2 crystals is systematically investigated. It reveals that, with the increase of Li content, LixAg1–xGaSe2 almost keeps the same tetragonal symmetry with AgGaSe2 until x ≈ 0.9. The NLO effects and birefringence values vary with respect to x with the largest variation at x = 0.8–0.9. The optimal combination of birefringence (0.03–0.025) and nonlinear parameters (26–30 pm V−1) is achieved at x = 0.4–0.5. As the energy band gap increases with the increase of x, the maximal value of 2.2 eV for chalcopyrite structure suggests that the laser‐induced damage threshold of LixAg1–xGaSe2 would be as large as five‐fold of AgGaSe2. This study provides a good example to show that the rational substitution between Li and Ag can significantly improve the balance of NLO properties in chalcogenides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.