Abstract
Carriers of variant alleles of genes that encode liver CYP450 and UGT enzymes may experience abnormal plasma levels of antipsychotics and, consequently, worse efficacy or tolerability. Although pharmacogenomics is a rapidly developing field, current guidelines often rely on limited, underpowered evidence. We have previously demonstrated that meta-analysis is a viable strategy for overcoming this problem. Here, we propose a project that will expand our previous work and create a living systematic review and meta-analysis of drug plasma level differences between carriers and non-carriers of variant genotype-predicted phenotypes for every pharmacokinetic drug-gene interaction relevant to commonly used antipsychotic drugs. First, a baseline systematic review and meta-analysis will be conducted by searching for observational pharmacogenomics-pharmacokinetic studies. Data on dose-adjusted drug plasma levels will be extracted, and participants will be grouped based on their genotype for each drug-gene pair separately. Differences in plasma drug levels between different phenotypes will be compared using a random-effect ratio-of-means meta-analysis. The risk of bias will be assessed using ROBINS-I, and the certainty of evidence will be assessed using GRADE. Following the establishment of baseline results, the literature search will be re-run at least once every six months, and the baseline data will be updated and re-evaluated as new evidence is published. A freely available website will be designated to present up-to-date results and conclusions. This systematic review will provide evidence-based results that are continuously updated with evidence as it emerges in the rapidly developing field of pharmacogenomics. These results may help psychiatrists in their decision-making, as clinicians are becoming increasingly aware of the patients' genetic data as testing becomes more widespread and cheaper. In addition, the results may serve as a scientific basis for the development of evidence-based pharmacogenomics algorithms for personalized dosing of antipsychotics to mitigate potentially harmful drug-gene interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.