Abstract

•The method for generating seamless coverage of 3D objects with skin equivalent •Three-joint robotic finger covered with living skin equivalent •Wound repair of a robotic finger covered with dermis equivalent Humanoids are robots created with human forms or characteristics; these robots also have the potential to seamlessly interact with human beings. By replicating the appearances and functions (e.g., self-healing) of human beings, humanoids have the potential to establish more harmonic and natural human-robot interactions. Here, we propose the use of skin equivalent, a living skin model consisting of cells and extracellular matrix, as a human-like and self-healing coverage material for robots. We fabricated a three-joint robotic finger covered with skin equivalent by developing a method to cover three-dimensional objects with skin equivalent. Furthermore, inspired by the medical treatment of deeply burned skin using grafted hydrogels, we demonstrated wound repair of a dermis equivalent covering a robotic finger by culturing the wounded tissue grafted with a collagen sheet. With the above results, this research shows the potential of using skin equivalent as human-like and self-healing coverage material for robots. Humanoids are robots created with human forms or characteristics; these robots also have the potential to seamlessly interact with human beings. By replicating the appearances and functions (e.g., self-healing) of human beings, humanoids have the potential to establish more harmonic and natural human-robot interactions. Here, we propose the use of skin equivalent, a living skin model consisting of cells and extracellular matrix, as a human-like and self-healing coverage material for robots. We fabricated a three-joint robotic finger covered with skin equivalent by developing a method to cover three-dimensional objects with skin equivalent. Furthermore, inspired by the medical treatment of deeply burned skin using grafted hydrogels, we demonstrated wound repair of a dermis equivalent covering a robotic finger by culturing the wounded tissue grafted with a collagen sheet. With the above results, this research shows the potential of using skin equivalent as human-like and self-healing coverage material for robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call