Abstract
Transition metal mediated living radical polymerisation of butyl methacrylate has been demonstrated with a copper(I) halide N-alkyl-2-pyridylmethanimine ligands based catalyst. Optimum conditions were found to be with copper(I) chloride and N-octyl-2-pyridylmethanimine catalyst at 65 °C where conversions of 85% were achieved with polymers of M n = 8900 g mol −1 (theoretical = 8400 g mol −1) and PDI = 1.23. Both non-ionic and ionic surfactants were employed which were also made by living radical polymerisation. The non-ionic surfactant was a block copolymer of PMMA from a polyethyleneglycol macroinitiator (total M n = 7600 g mol −1, PDI = 1.20) and the ionic surfactant PDMEAMA–PMMA (total M n = 8000 g mol −1, PDI = 1.21) with the PDMEAMA block quaternized with MeI (13.8%, 28.4%, 47.7% and 100%). A range of ligands were employed in the suspension polymerisation by varying the alkyl group on the ligand increasing the hydrophobicity (alkyl = propyl (PrMI), pentyl (PMI), octyl (OMI), dodecyl (DMI) and octadecyl (ODMI)). The more hydrophobic ligands were found to be more effective due to lower partitioning into the aqueous phase. Block copolymers of P(EMA)–P(BMA) and P(MMA)–P(BMA) were prepared by first preparing macroinitiators via living radical polymerisation ( M n = 1600 g mol −1 (PDI = 1.23) for P(EMA) and M n = 1500 g mol −1 (PDI = 1.22) for P(MMA)) and using them for initiation of BMA in suspension polymerisation. Block copolymers had M n between 12,800 and 13,700 g mol −1 with PDI between 1.33 and 1.54. Block copolymer growth showed excellent linear first order kinetics wrt monomer and demonstrated characteristics expected of a living radical polymerisation. Particle sizes were measured by SEM and DLS with good agreement (1.4–2.8 μm) and SEM showed spherical particles were formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.