Abstract

This work is about the total variation (TV) minimization which is used for recovering gradient-sparse signals from compressed measurements. Recent studies indicate that TV minimization exhibits a phase transition behavior from failure to success as the number of measurements increases. In fact, in large dimensions, TV minimization succeeds in recovering the gradient-sparse signal with high probability when the number of measurements exceeds a certain threshold; otherwise, it fails almost certainly. Obtaining a closed-form expression that approximates this threshold is a major challenge in this field and has not been appropriately addressed yet. In this work, we derive a tight lower-bound on this threshold in case of any random measurement matrix whose null space is distributed uniformly with respect to the Haar measure. In contrast to the conventional TV phase transition results that depend on the simple gradient-sparsity level, our bound is highly affected by generalized notions of gradient-sparsity. Our proposed bound is very close to the true phase transition of TV minimization confirmed by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.