Abstract

4-Methyl-1-pentene (4MP) was polymerized with a classical α-diimine nickel complex [(2,6-(iPr)2C6H3)NC(acenaphthene)CN(2,6-(iPr)2C6H3))NiBr21] in the presence of various alkylaluminium compounds. Influences of cocatalysts on 4MP polymerization behavior were evaluated in detail. The different effects of trialkylaluminium cocatalysts between ethylene polymerization and 4-methyl-1-pentene polymerization were observed. Inexpensive diethylaluminium chloride (DEAC) compound could replace methylaluminoxane (MAO) as a more active cocatalyst for 4MP polymerization, and the influences of polymerization parameters including temperature and [Al]/[Ni] mole ratio were examined. At 0 °C, living/controlled polymerization of 4-methyl-1-pentene (4MP) was also achieved using inexpensive DEAC as cocatalyst, and trialkylaluminium compounds as chain transfer agents were closely relevant to achieve living/controlled polymerization. The obtained poly(4-methyl-1-pentene)s are amorphous elastomers with low glass transition temperature (Tg). Nuclear magnetic resonance (NMR) analyses showed that various branches such as methyl, isobutyl, long 2-methylalkyl branches are present in the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.