Abstract

The feasibility of batch and continuous (60, 80, and 100 mL/min) mode photocatalysis systems in real-time livestock wastewater treatment was investigated. The photocatalytic experiments were conducted with two types of photocatalysts namely slurry titanium-dioxide (UV-TiO2) and granular activated carbon supported TiO2 (GAC-TiO2). The performance of the systems was compared using economic analysis based on cost and time required to attain maximum efficiency. The photocatalytic reactors operated with GAC-TiO2 was highly effective under both batch (total volatile solids (TVS) removal of 100 % within 6 min and a total operational cost of 0.68 USD per kg of TVS removal) and continuous (at 60 mL/min) (TVS removal of 63 % at a hydraulic retention time (HRT) of 240 min and a total operational cost of 62.16 USD per kg of TVS removal) mode experiments. The economic analyses indicated that cost reduction was a function of optimum time taken for maximum removal efficiency. Subsequently, the experiments were repeated with ultraviolet light (UV) alone, UV-GAC, and GAC alone to quantify effects of adsorption and photolysis. The results confirmed that the effect of GAC in the treatment/degradation of livestock wastewater by adsorption was negligible. However, the presence of GAC in UV systems propelled the rate of biochemical oxygen demand (BOD) and TVS removals. The entire observations reveal that the degradation was mainly by two reaction mechanisms: firstly, adsorption on the GAC surface and secondly by photocatalytic degradation on the GAC-TiO2 surface. Therefore, GAC-TiO2 photocatalysis could be cost-effectively applied for high-rate treatment of industrial wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call