Abstract

Populations of large wildlife have declined in many landscapes around the world, and have been replaced or displaced by livestock. The consequences of these changes on the transfer of organic matter (OM) and nutrients from terrestrial to aquatic ecosystems are not well understood. We used behavioural data, excretion and egestion rates and C: N: P stoichiometry of dung and urine of zebu cattle, to develop a metabolism-based estimate of loading rates of OM (dung), C, N and P into the Mara River, Kenya. We also directly measured the deposition of OM and urine by cattle into the river during watering. Per head, zebu cattle excrete and/or egest 25.6 g dry matter (DM, 99.6 g wet mass; metabolism) - 27.7 g DM (direct input) of OM, 16.0–21.8 g C, 5.9–9.6 g N, and 0.3–0.5 g P per day into the river. To replace loading rates OM of an individual hippopotamus by cattle, around 100 individuals will be needed, but much less for different elements. In parts of the investigated sub-catchments loading rates by cattle were equivalent to or higher than that of the hippopotamus. The patterns of increased suspended materials and nutrients as a result of livestock activity fit into historical findings on nutrients concentrations, dissolved organic carbon and other variables in agricultural and livestock areas in the Mara River basin. Changing these patterns of carbon and nutrient transport and cycling are having significant effects on the structure and functioning of both terrestrial and aquatic ecosystems.

Highlights

  • Large animals strengthen the linkage between ecosystems by facilitating the movement of organic matter and inorganic nutrients, often against naturally-established boundaries [1, 2]

  • In addition to direct loading measurements, we developed a simple metabolic model to estimate cattle loading rates of organic matter and nutrients (C, N and P) from dung and urine deposited by cattle into the Mara River, and compared results with existing estimates of loading rates for hippos in the river [4]

  • The bootstrap data and 95 confidence intervals (CIs) for livestock characteristics and C, N and P composition of cattle dung and urine are presented in S1 Table

Read more

Summary

Introduction

Large animals strengthen the linkage between ecosystems by facilitating the movement of organic matter and inorganic nutrients, often against naturally-established boundaries [1, 2].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.