Abstract

Predictive modelling techniques using presence-only data have attracted increasing attention because they can provide information on species distributions and their potential habitat for conservation and ecosystem management. However, the existing predictive modelling techniques have several limitations. Here, we propose a novel predictive modelling technique, Limiting Variable and Environmental Suitability (LIVES), for predicting the distributions and potential habitats of species using presence-only data. It is based on limiting factor theory, which postulates that the occurrence of a species is only determined by the factor that most limits its distribution. LIVES predicts the suitability of a candidate grid cell for a species in terms of limiting environmental factor. It also predicts the most limiting factor or the potential limiting factor at the grid cell. The environmental factors can be climatic, geological, biological and any other relevant environmental factors, whether quantitative or qualitative. The predicted habitats consist of the current distribution of the species and the potentially suitable areas for the species where there is currently no record of occurrence. We also compare several properties of LIVES and other predictive modelling techniques. On the basis of 1,000 simulations, the average predictions of LIVES are more accurate than the two other commonly used modelling techniques (BIOCLIM and DOMAIN) for presence-only data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.