Abstract

AbstractThe aim of the research presented was to develop a potential liver‐targeting prolonged‐circulation polymeric prodrug of doxorubicin (Dox) with a pH‐triggered drug release profile. In particular, linear dendritic block copolymers composed of polyamidoamine dendrimer (PAMAM) and poly(ethylene glycol) (PEG; number‐average molecular weight of 2000 g mol−1) with or without galactose (Gal) were synthesized. Dox was coupled to the copolymers via an acid‐labile hydrazone linker. These prodrugs, designated Gal‐PEG‐b‐PAMAM‐Doxn and mPEG‐b‐PAMAM‐Doxm, showed accelerated Dox release as the pH decreased from 8.0 to 5.6. Cytotoxicity of the prodrugs was lower than that of free Dox due to the gradual drug release nature. Compared to mPEG‐b‐PAMAM‐Doxm, Gal‐PEG‐b‐PAMAM‐Doxn showed rather high cytotoxicity against Bel‐7402, suggestive of its galactose receptor‐mediated enhanced tumor uptake. This galactose receptor‐mediated liver‐targeted profile was further confirmed by the prolonged retention time in hepatoma tissue monitored using magnetic resonance imaging. Gal‐PEG‐b‐PAMAM‐Doxn showed better in vivo antitumor efficacy than free Dox, suggesting its great potential as a polymeric antitumor prodrug. Copyright © 2010 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call