Abstract

The Wnt pathway has previously been shown to play a role in hepatic zonation. Herein, we have explored the role of 3 key components (Apc, beta-catenin, and c-Myc) of the Wnt pathway in the zonation of ammonia metabolizing enzymes. Conditional deletion of Apc, beta-catenin, and c-Myc was induced in the livers of mice and the expression of periportal and perivenous hepatocyte markers was determined by polymerase chain reaction, Western blotting, and immunohistochemical techniques. Under normal circumstances, the urea cycle enzyme carbamoylphosphate synthetase I (CPS I) is present in the periportal, intermediate, and the first few layers of the perivenous zone. In contrast, glutamine synthetase (GS)--and nuclear beta-catenin--is expressed in a complementary fashion in the last 1-2 cell layers of the perivenous zone. Conditional loss of Apc resulted in the expression of nuclear beta-catenin and GS in most hepatocytes irrespective of zone. Induction of GS in hepatocytes outside the normal perivenous zone was accompanied by a reduction in the expression of CPS I. Deletion of beta-catenin induces a loss of GS and a complementary increase in expression of CPS I irrespective of whether Apc is present. Remarkably, deletion of c-Myc did not perturb the pattern of zonation. It has been shown that the Wnt pathway is key to imposing the pattern of zonation within the liver. Herein we have addressed the relevance of 3 major Wnt pathway components and show critically that the zonation is c-Myc independent but beta-catenin dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call