Abstract
The renin-angiotensin-aldosterone system controls blood pressure and salt-volume homeostasis. Renin, which is the first enzymatic step of the cascade, is critically regulated at the transcriptional level. In the present study, we investigated the role of liver X receptor alpha (LXR(alpha)) and LXR(beta) in the regulation of renin. In vitro, both LXRs could bind to a noncanonical responsive element in the renin promoter and regulated renin transcription. While LXR(alpha) functioned as a cAMP-activated factor, LXR(beta) was inversely affected by cAMP. In vivo, LXRs colocalized in juxtaglomerular cells, in which LXR(alpha) was specifically enriched, and interacted with the renin promoter. In mouse models, renin-angiotensin activation was associated with increased binding of LXR(alpha) to the responsive element. Moreover, acute administration of LXR agonists was followed by upregulation of renin transcription. In LXR(alpha) mice, the elevation of renin triggered by adrenergic stimulation was abolished. Untreated LXR(beta) mice exhibited reduced kidney renin mRNA levels compared with controls. LXR(alpha)LXR(beta) mice showed a combined phenotype of lower basal renin and blunted adrenergic response. In conclusion, we show herein that LXR(alpha) and LXR(beta) regulate renin expression in vivo by directly interacting with the renin promoter and that the cAMP/LXR(alpha) signaling pathway is required for the adrenergic control of the renin-angiotensin system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.