Abstract

The adipocyte integrates crucial information about metabolic needs in order to balance energy intake, storage, and expenditure. Whereas white adipose tissue stores energy, brown adipose tissue is a major site of energy dissipation through adaptive thermogenesis mediated by uncoupling protein 1 (UCP1) in mammals. In both white and brown adipose tissue, nuclear receptors and their coregulators, such as peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgamma coactivator 1alpha (PGC-1alpha), play key roles in regulating their development and metabolic functions. Here we show the unexpected role of liver X receptor alpha (LXRalpha) as a direct transcriptional inhibitor of beta-adrenergic receptor-mediated, cyclic AMP-dependent Ucp1 gene expression through its binding to the critical enhancer region of the Ucp1 promoter. The mechanism of inhibition involves the differential recruitment of the corepressor RIP140 to an LXRalpha binding site that overlaps with the PPARgamma/PGC-1alpha response element, resulting in the dismissal of PPARgamma. The ability of LXRalpha to dampen energy expenditure in this way provides another mechanism for maintaining a balance between energy storage and utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call