Abstract

Nuclear receptors (NRs) play crucial roles in the regulation of hepatic cholesterol synthesis, metabolism, and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured murine cholangiocytes and found that these cells express a specific subset of NRs, including liver X receptor (LXR) β and peroxisome proliferator-activated receptor (PPAR) δ. Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann-Pick C1-like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane via specific interaction with a peroxisome proliferator-activated response element (PPRE) within the NPC1L1 promoter. We propose that (1) LXRβ and PPARδ coordinate NPC1L1/ABCA1-dependent vectorial cholesterol flux from bile through cholangiocytes and (2) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, two serious health concerns for humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.