Abstract

BackgroundIntrauterine growth restriction (IUGR) remains a major problem associated with swine production. Thus, understanding the physiological changes of postnatal IUGR piglets would aid in improving growth performance. Moreover, liver metabolism plays an important role in the growth and survival of neonatal piglets.ResultsBy profiling the transcriptome of liver samples on postnatal Days 1, 7, and 28, our study focused on characterizing the growth, function, and metabolism in the liver of IUGR neonatal piglets. Our study demonstrates that the livers of IUGR piglets were associated with a series of complications, including inflammatory stress and immune dysregulation; cytoskeleton and membrane structure disorganization; dysregulated transcription events; and abnormal glucocorticoid metabolism. In addition, the abnormal liver function index in the serum [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total protein (TP)], coupled with hepatic pathological and ultrastructural morphological changes are indicative of liver damage and dysfunction in IUGR piglets. Moreover, these results reveal the sex-biased developmental dynamics between male and female IUGR piglets, and that male IUGR piglets may be more sensitive to disrupted metabolic homeostasis.ConclusionsThese observations provide a detailed reference for understanding the mechanisms and characterizations of IUGR liver functions, and suggest that the potential strategies for improving the survival and growth performance of IUGR offspring should consider the balance between postnatal catch-up growth and adverse metabolic consequences. In particular, sex-specific intervention strategies should be considered for both female and male IUGR piglets.

Highlights

  • Intrauterine growth restriction (IUGR) remains a major problem associated with swine production

  • By calculating the relative body weight of the IUGR piglets to normal body weight (NBW) piglets, the results showed that the body weight ratios were 45, 44, and 66% on Days 1, 7, and 28, respectively (Fig. 1b)

  • It was noteworthy that the gaps in body weight between the IUGR and NBW piglets was reduced on Day 28 compared with that on Day 1 and Day7, which implies a catch-up growth compensation in IUGR piglets

Read more

Summary

Introduction

Intrauterine growth restriction (IUGR) remains a major problem associated with swine production. Understanding the physiological changes of postnatal IUGR piglets would aid in improving growth performance. Liver metabolism plays an important role in the growth and survival of neonatal piglets. Intrauterine growth restriction (IUGR) is typically defined as mammalian neonates with a low birth weight due to intrauterine crowding and placental insufficiency, resulting in impaired fetal or postnatal growth and. The liver plays a vital role in nutrient utilization and metabolism, as well as in endocrine and immune homeostasis. The IUGR neonates have been shown to be highly prone to developing metabolic syndrome (e.g., obesity and diabetes) due to the increasing hepatic gluconeogenic capacity and impairing β-cell function [10, 11]. The precise mechanisms associated with IUGR piglet liver function remain poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call