Abstract

The hepatic vascular niche plays an important role in the pathological process of liver fibrosis. Liver sinusoidal endothelial cells (LSECs) predominantly compose hepatic vascular niches. Endothelial cell (EC)-expressing sphingosine 1-phosphate receptor 2 (S1pr2) plays an essential role in the regulation of vascular functions. Nevertheless, it remains unknown whether liver LSEC-S1pr2 might modulate pathological liver fibrosis. In this study, liver fibrosis was induced by hepatotoxin carbon tetrachloride (CCl4 ). The expression of S1pr2 is significantly downregulated in liver sinusoidal endothelial cells after CCl4 treatment. The loss of S1pr2 in LSECs significantly alleviated liver fibrosis after chronic insult, whereas the overexpression of S1pr2 in LSECs accentuated liver fibrogenesis. In vivo experiments further revealed that the deficiency of S1pr2 in LSECs dampened hepatic stellate cell (HSC) activation, while overexpression of S1pr2 in LSECs enhanced HSC activation with more extracellular matrix component production. Mechanistically, LSEC-S1pr2 activates the YAP signaling pathway to potentiate the transactivation of TGF-β, which acts on HSCs in a paracrine manner, and thus aggravated liver fibrosis. Taken together, our results uncover a novel pathological mechanism of liver fibrosis in which LSEC-S1pr2 plays an important role in modulating the development of liver fibrosis, providing a future novel therapy target against liver fibrogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call