Abstract

The hypothesis that liver lipid accumulation in fish is an adaptive strategy to survive the winter in the high-altitude environment was assessed in this study. During summer 2019, specimens of Cottus gobio were sampled in 15 watercourses of Friuli Venezia-Giulia Region (Italy) to verify if hepatic steatosis is or not normally present in the species. To do this, hepatic vacuolization was assessed by histology using a semiquantitative score. Furthermore, C. gobio were also captured during the ice-free season at Dimon Lake (1872 m a.s.l.) and But Stream (520 m a.s.l.) to compare the trend in lipid accumulation: water temperature, hepatosomatic index (HSI), gonadosomatic index (GSI), Fulton’s condition factor (K), and lipid area percentage (lipid %) were measured monthly. Findings revealed that liver steatosis is rather common in C. gobio. However, the trend in lipid accumulation of this species differed between Dimon Lake and But Stream. Based on the HSI and the GSI, the reproductive cycles differed in fish from the two environments (April–May in But Stream; May–June in Dimon Lake). While K values remained unchanged in the But Stream specimens, significant changes were recorded for Dimon specimens. The increase in lipid % from July to August in the Dimon Lake specimens coincided with greater food availability. With the rapid drop in lake water temperature in October, the lipid % decreased due to slower metabolic rate and lipid utilization from liver stores. There was a slight decrease in lipid % in the But Stream specimens, indicating that lipids were not being accumulated. Introduced years ago, the Dimon Lake bullhead population has since adapted to the winter conditions at high elevation.

Highlights

  • Lipids are essential nutrients for fish and provide fuel for growth [1]

  • The presence of hepatic steatosis in C. gobio was assessed in 15 watercourses of Friuli Venezia-Giulia

  • Histology of the samples showed a range of cytoplasm vacuolization of the hepatocytes from score 0 to score 3

Read more

Summary

Introduction

Lipids are essential nutrients for fish and provide fuel for growth [1]. Lipid metabolism in fish differs from that of other vertebrates. Fish acquire lipids from their diet and absorb them as fatty acids and triacylglycerols, which are aggregated into chylomicron particles [2]. Lipids can be synthesized by the liver (endogenous lipid metabolism). Fish store lipids in various depot organs, including the mesenteric membranes, the muscle, and the liver [2]. Liver lipid accumulation is induced by biochemical mechanisms: decreased hepatic lipid export, increased hepatic uptake of circulating fatty acids, decreased hepatic beta-oxidation, and increased hepatic fatty acid synthesis [2]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.