Abstract
The classic feature extraction techniques used in recent research on computer-aided diagnosis (CAD) of liver cancer have several disadvantages, including duplicated features and substantial computational expenses. Modern deep learning methods solve these issues by implicitly detecting complex structures in massive quantities of healthcare image data. This study suggests a unique bio-inspired deep-learning way for improving liver cancer prediction outcomes. Initially, a novel semantic segmentation technique known as UNet++ is proposed to extract liver lesions from computed tomography (CT) images. Second, a hybrid approach that combines the Chaotic Cuckoo Search algorithm and AlexNet is indicated as a feature extractor and classifier for liver lesions. LiTS, a freely accessible database that contains abdominal CT images, was employed for liver tumor diagnosis and investigation. The segmentation results were evaluated using the Dice similarity coefficient and Correlation coefficient. The classification results were assessed using Accuracy, Precision, Recall, F1 Score, and Specificity. Concerning the performance metrics such as accuracy, precision, and recall, the recommended method performs better than existing algorithms producing the highest values such as 99.2%, 98.6%, and 98.8%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.