Abstract

Chronic liver injury of various etiologies can cause liver fibrosis, which is characterized by the progressive accumulation of connective tissue in the liver. As no effective treatment for liver fibrosis is available yet, extensive research is ongoing to further study the mechanisms underlying the development of disease- or toxicity-induced liver fibrosis and to identify potential pro- or anti-fibrotic properties of compounds. This review gives an overview of the in vitro methods that are currently available for this purpose. The first focus is on cell culture models, since the majority of in vitro research uses these systems. Both primary cells and cell lines as well as the use of different culture matrices and co-culture models are discussed. Second, the use of precision-cut liver slices, which recently came into attention as in vitro model for the study of fibrosis, is discussed. The overview clearly shows that continuous optimization and adaptation have extended the potential of in vitro models for liver fibrosis during the past years. By combining the use of the different cell and tissue culture models, the mechanisms underlying multicellular fibrosis development can be studied in vitro and potential pro- or anti-fibrotic properties of compounds can be identified both on single liver cell types and in human liver tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call