Abstract

PurposeTo compare the results of T1ρ MR imaging and 2D real-time shear-wave elastography (SWE) for liver fibrosis detection and staging.MethodsTwenty-nine rabbit models of CCl4-induced liver fibrosis were established and six untreated rabbits served as controls. T1ρ MR imaging and 2D real-time SWE examination were performed at 2, 4, 6, 8, 10, and 12 weeks. T1ρ values and liver stiffness (LS) values were measured. Fibrosis was staged according to the METAVIR scoring system. Correlation test was performed among T1ρ values, LS values, and fibrosis stage. Receiver operating characteristic (ROC) analysis was performed for assessing diagnostic performance of T1ρ and SWE in detection of no fibrosis (F0), substantial fibrosis (≥ F2), severe fibrosis (≥ F3), and cirrhosis (F4).ResultsThere was moderate positive correlation between fibrosis stage and T1ρ values (r = 0.566; 95% CI 0.291–0.754; P < 0.0001), and LS value (r = 0.726; 95% CI 0.521–0.851; P = 0.003). T1ρ values showed moderate positive correlations with LS values [r = 0.693; 95% confidence interval (CI) 0.472–0.832; P < 0.0001]. Areas Under ROC (AUROCs) were 0.861 (95% CI 0.705–0.953) for SWE and 0.856 (95% CI 0.698–0.950) for T1ρ (P = 0.940), 0.906 (95% CI 0.762–0.978) for SWE and 0.849 (95% CI 0.691–0.946) for T1ρ (P = 0.414), 0.870 (95% CI 0.716–0.958) for SWE and 0.799 (95% CI 0.632–0.913) for T1ρ (P = 0.422), and 0.846 (95% CI 0.687–0.944) for SWE and 0.692 (95% CI 0.517–0.835) for T1ρ (P = 0.137), when diagnosing liver fibrosis with ≥ F1, ≥ F2, ≥ F3, and F4, respectively. There was moderate positive correlation between inflammatory activity and T1ρ values (r = 0.520; 95% CI 0.158–0.807; P = 0.013).ConclusionT1ρ imaging has potential for liver fibrosis detection and staging with good diagnostic capability similar to that of ultrasonography elastography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.