Abstract
To develop and evaluate deep learning models devised for liver fat assessment based on ultrasound (US) images acquired from four different liver views: transverse plane (hepatic veins at the confluence with the inferior vena cava, right portal vein, right posterior portal vein) and sagittal plane (liver/kidney). US images (four separate views) were acquired from 135 participants with known or suspected nonalcoholic fatty liver disease. Proton density fat fraction (PDFF) values derived from chemical shift-encoded magnetic resonance imaging served as ground truth. Transfer learning with a deep convolutional neural network (CNN) was applied to develop models for diagnosis of fatty liver (PDFF ≥ 5%), diagnosis of advanced steatosis (PDFF ≥ 10%), and PDFF quantification for each liver view separately. In addition, an ensemble model based on all four liver view models was investigated. Diagnostic performance was assessed using the area under the receiver operating characteristics curve (AUC), and quantification was assessed using the Spearman correlation coefficient (SCC). The most accurate single view was the right posterior portal vein, with an SCC of 0.78 for quantifying PDFF and AUC values of 0.90 (PDFF ≥ 5%) and 0.79 (PDFF ≥ 10%). The ensemble of models achieved an SCC of 0.81 and AUCs of 0.91 (PDFF ≥ 5%) and 0.86 (PDFF ≥ 10%). Deep learning-based analysis of US images from different liver views can help assess liver fat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.