Abstract

To determine whether the liver is a focus of insufficient oxygenation and whether liver is a source of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in a porcine model of endotoxicosis. In vivo, prospective, controlled, repeated-measures, experimental study. Experimental physiology laboratory in a university. Juvenile pigs, weighing 22 to 35 kg. Catheters for blood sampling were inserted into the carotid artery, portal vein, hepatic vein, and pulmonary artery of anesthetized animals. Ultrasonic flow probes were placed on the portal vein and the hepatic artery. During surgery, normal saline was infused intravenously at 25 mL/kg/hr. Following stabilization, animals were allocated randomly to one of two groups. The endotoxemic group (n = 6) received 50 mg/kg of purified Escherichia coli lipopolysaccharide infused into the external jugular vein over 1 hr. The control group (n = 6) received a sham saline infusion infused over 1 hr. Once the endotoxin or sham infusion was initiated, the rate of the intravenous saline infusion was increased to 48 mL/kg/hr for the remainder of the experiment. Measurements were obtained before the endotoxin or sham infusion, immediately after the infusion, and every 30 mins thereafter for 4 hrs. Blood gases, lactate, and bioactive TNF and IL-6 concentrations were measured from the carotid artery, portal vein, hepatic vein, and pulmonary artery. The porcine model is characterized by systemic hypotension, pulmonary hypertension, and maintenance of cardiac output. Despite decreased hepatic oxygen delivery in endotoxemic animals (p < .02), there was no change in hepatic oxygen consumption compared with controls. Throughout the experiment, there was net hepatic consumption of lactate in both groups. There was no significant hepatic production (or consumption) of TNF or IL-6 in either group. In this porcine model of endotoxicosis, there is a reduction of hepatic oxygen delivery but dysoxia is not present. The liver is not a source of TNF or IL-6 in this model of endotoxicosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call