Abstract

Studies show that the continuous consumption of fructose can lead to nonalcoholic fatty liver disease (NAFLD) and steatohepatitis. We aimed to investigate the role of Metformin in an animal model of liver injury caused by fructose intake, focusing on the molecular markers of lipogenesis, beta-oxidation, and antioxidant defenses. Male three months old C57BL/6 mice were divided into control group (C) and fructose group (F, 47% fructose), maintained for ten weeks. After, the groups received Metformin or vehicle for a further eight weeks: control (C), control + Metformin (CM), fructose (F), and fructose + Metformin (FM). Fructose resulted in hepatic steatosis, insulin resistance and lower insulin sensitivity in association with higher mRNA levels of proteins linked with de novo lipogenesis and increased lipid peroxidation. Fructose diminished mRNA expression of antioxidant enzymes, and of proteins responsible for mitochondrial biogenesis. Metformin reduced de novo lipogenesis and increased the expression of proteins related to mitochondrial biogenesis, thereby increasing beta-oxidation and decreasing lipid peroxidation. Also, Metformin upregulated the expression and activity of antioxidant enzymes, providing a defense against increased reactive oxygen species generation. Therefore, a significant reduction in triglyceride accumulation in the liver, steatosis and lipid peroxidation was observed in the FM group. In conclusion, fructose increases de novo lipogenesis, reduces the antioxidant defenses, and diminishes mitochondrial biogenesis. After an extended period of fructose intake, Metformin treatment, even in continuing the fructose intake, can reverse, at least partially, the liver injury and prevents NAFLD progression to more severe states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.