Abstract

The effects of 4-weeks ethanol application (20% ethanol, w/w, 2 g X kg-1 on the alcohol oxidizing systems and gluconeogenic enzyme activities of the liver in guinea pigs kept in the cold (+4 degrees C) and at room temperature (+20 degrees C) were studied. The controls were guinea pigs reared at room temperature or in a cold environment without ethanol. The study showed a significant increase (1.5-fold) in liver microsomal cytochrome P-450 after chronic ethanol treatment at room temperature, but not in a cold environment. Microsomal NADPH oxidase activity did not significantly change in any group. Ethanol treatment in a cold environment resulted in a significant increase in liver mitochondrial cytochromes, aa3 and c+c1, and at room temperature in cyt aa3. The activities of total liver homogenate alcohol dehydrogenase or catalase did not change after chronic ethanol treatment. The activity of liver fructose-1.6-diphosphatase showed a significant ethanol induced decrease at room temperature, an effect not observed in the cold environment. Ethanol increased glucose-6-phosphatase activity in the cold, but not at room temperature. In conclusion, the stimulation of liver mitochondrial cytochromes and microsomal cyt P-450 as a consequence of chronic ethanol treatment indicated an increased oxidation capacity for ethanol. The stimulation of glucose-6-phosphatase in a cold environment might be responsible for increasing glucose for heat production after chronic ethanol treatment in cold adapted animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.