Abstract
We study liveness and model checking problems for broadcast networks, a system model of identical clients communicating via message passing. The first problem that we consider is Liveness Verification. It asks whether there is a computation such that one clients visits a final state infinitely often. The complexity of the problem has been open. It was shown to be texttt {P}-hard but in texttt {EXPSPACE}. We close the gap by a polynomial-time algorithm. The latter relies on a characterization of live computations in terms of paths in a suitable graph, combined with a fixed-point iteration to efficiently check the existence of such paths. The second problem is Fair Liveness Verification. It asks for a computation where all participating clients visit a final state infinitely often. We adjust the algorithm to also solve fair liveness in polynomial time. Both problems can be instrumented to answer model checking questions for broadcast networks against linear time temporal logic specifications. The first problem in this context is Fair Model Checking. It demands that for all computations of a broadcast network, all participating clients satisfy the specification. We solve the problem via the Vardi–Wolper construction and a reduction to Liveness Verification. The second problem is Sparse Model Checking. It asks whether each computation has a participating client that satisfies the specification. We reduce the problem to Fair Liveness Verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.