Abstract

The C. elegans adult hermaphrodite contains a renewable pool of mitotically dividing germ cells that are contained within the progenitor zone (PZ), at the distal region of the germline. From the PZ, cells enter meiosis and differentiate, ensuring the continued production of oocytes. In this study, we investigated the proliferation strategy used to maintain the PZ pool by using a photoconvertible marker to follow the fate of selected germ cells and their descendants in live worms. We found that the most distal pool of 6–8 rows of cells in the PZ (the distal third) behave similarly, with a fold expansion corresponding to one cell division every 6h on average. Proximal to this region, proliferation decreases, and by the proximal third of the PZ, most cells have stopped dividing. In addition, we show that all the descendants of cells in rows 3 and above move proximally and leave the PZ over time. Combining our data with previous studies, we propose a stochastic model for the C. elegans PZ proliferation, where a pool of proliferating stem cells divide symmetrically within the distal most 6–8 rows of the germline and exit from this stem cell niche occurs by displacement due to competition for limited space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.