Abstract
Live Yeast Cell Derivative is a medicinal extract of Saccharomyces cerevisiae that has demonstrated efficacy in improving the rate and quality of wound healing in mouse and human systems. However, the mechanisms by which LYCD promotes healing are largely uncharacterized. In this report, we demonstrate that LYCD has effects on the transcriptional profile of the human monocytic cell line THP-1. Thirty minute exposures of THP-1 cells with LYCD induced a 6 to 44-fold, dose-dependent increase in the relative expression of the proto-oncogene c-fos in complete media containing 10% FBS or in low serum media containing 0.1% FBS. Furthermore, protein levels of c-Fos rise at 30 minutes of LYCD exposure and remained detectable for at least 120 minutes of LYCD exposure. However, the relative abundance of the c-fos transcript returned to basal levels by 120 minutes. LYCD also induced expression of c-jun with maximal expression of 3-fold at 60 minutes of exposure. Pretreatments with EGFR kinase inhibitor AG-1478 and the MEK1 inhibitor PD98059 blocked the LYCD-dependent increases in c-fos expression. Consistent with signaling through the EGFR, we have demonstrated by RT-PCR the presence of the mRNA for the EGFR (ErbB1/HER1) in THP-1 cells. Taken together these data suggest that LYCD acts through an EGFR-like cell surface receptor resulting in the activation of the EGFR kinase and the ERK1/2 signaling cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.