Abstract

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call